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Using Stokes flow between eccentric, counter-rotating cylinders as a prototype for 
bounded, nearly parallel lubrication flow, we investigate the effect of a slender 
recirculation region within the flow field on cross-stream heat or mass transport in 
the important limit of high PQclet number Pe where the enhancement over pure 
conduction heat transfer without recirculation is most pronounced. The steady 
enhancement is estimated with a matched asymptotic expansion to resolve the 
diffusive boundary layers at the separatrices which bound the recirculation region. 
The enhancement over pure conduction is shown to vary as & at infinite Pe, where 
€4 is the characteristic width of the recirculation region. The enhancement decays 
from this asymptote as Pe-i. If one perturbs the steady flow by a time-periodic 
forcing, fast relative to the convective and diffusive times, the separatrices undergo 
a homoclinic entanglement which allows fluid elements to cross the separatrices. We 
establish the existence of this homoclinic entanglement and show that the resulting 
chaotic particle transport further enhances the cross-stream flux. We estimate the 
penetration of the fluid elements across the separatrices and their effective diffusivity 
due to this chaotic transport by a Melnikov analysis for small-amplitude forcing. 
These and the steady results then provide quantitative estimates of the time- 
averaged transport enhancement and allow optimization with respect to system 
parameters. An optimum forcing frequency which induces maximum heat- transfer 
enhancement is predicted and numerically verified. The predicted optimum 
frequency remains valid at strong forcing and large Pe where chaotic transport is as 
important as the recirculation mechanism. Since most heat and mass transport 
devices operate at high Pe, our analysis suggests that chaotic enhancement can 
improve their performance and that a small amplitude theory can be used to 
optimize its application. 

1. Introduction 
In many engineering applications, the pertinent heat or mass transport is across 

a unidirectional flow field. Even at high flow rates, such cross-stream transport is 
essentially dominated by diffusion/conduction and is extremely inefficient. (We shall 
focus on heat transport subsequently but the thermal diffusivity will be referred to 
as diffusivity for simplicity. The analogy to mass transport is obvious.) However, 
when the parallel flow is slightly disturbed such that a slender recirculation bubble 

t Author to whom correspondence should be addressed. 



120 S. Ghosh, H.-C. Ghang and M .  Sen 

appears within the flow, some convective flow is generated in the normal direction. 
As a result, significant increase in the cross-stream transport is observed even though 
the flow field is only slightly perturbed from parallel flow. For example, mass 
transport across a laminar falling film increases by as much as a factor of 10 when 
waves appear at  the interface (Goren & Mani 1968). Although the waves introduce 
about a 10% increase in the interfacial area and the flow field beneath the waves 
remains nearly parallel, the chief mechanism behind the enhancement is the slender 
recirculation below the interface created by the waves. Similarly, heat transfer in 
helicoidal tubes (Chavez, Zhixue & Sen 1988), in grooved channels (Ghaddar et al. 
1986) and in a heat exchanger tube with transverse vortices driven by the corona 
effect (Ohadi, Sharaf & Nelson 1991) have all been shown to increase significantly 
(orders of magnitude) when recirculations exist in the flow. We study this 
enhancement in cross-stream heat transfer with a prototype system of two- 
dimensional flow between counter-rotating eccentric cylinders (Aref & Balachandar 
1986; Chaiken et al. 1986; Ottino 1989). The effects of bubble size and PQclet number 
are scrutinized. We shall also analyse the effect of perturbing the recirculation bubble 
with a fast time-periodic modulation. In this system, this is effected by periodically 
varying the rotation speed of the outer cylinder about a mean speed. Time- 
dependent disturbances, however, can also be introduced by intrinsic instabilities 
such as the travelling wave instabilities of the falling film and oscillatory 
Rayleigh-BQnard convection (Holmes 1984; Broomhead & Ryrie 1988 ; Solomon & 
Gollub 1988 ; Weiss & Knobloch 1989). The time-periodic perturbation actually 
introduces a second mechanism for transport enhancement. As discussed by 
Eckhardt (1990), the periodic forcing breaks up the bounding streamlines of the 
recirculation region, which are either homoclinic or heteroclinic orbits connecting 
stagnation points, and allows exchange of fluids with the outside region. A 
stroboscopic map of a particle affected by the time-periodic flow field of the present 
system reveals chaotic particle paths near the boundary of the recirculation region 
(Aref & Balachandar 1986; Chaiken et al. 1986; Ottino 1989; Swanson & Ottino 
1990). In fact, this prototype is one of the first used to demonstrate the existence of 
Lagrangian chaos. We show that chaotic transport across a circulation boundary can 
be approximated by a diffusion process. We shall carry out a Melnikov analysis of the 
prototype system to estimate its enhanced transport rate due to this chaotic mixing. 
While earlier work has demonstrated both numerically and experimentally that 
chaotic particle paths can appear in the present system, our Melnikov analysis 
rigorously establishes their existence. More importantly, while others have 
speculated that the chaotic paths can enhance transport of heat and mass, the 
present Melnikov analysis actually offers a quantitative estimate of the enhancement. 
The contribution of chaotic transport is then properly added to molecular diffusion 
and advection-enhanced transport owing to the slender recirculation. An enhanced 
diffusion coefficient DePP is introduced to quantitatively represent the transport flux 
enhancement due to these combined mechanisms. Our analysis provides an analytical 
estimate of Defl as a function of system parameters and operating conditions. This 
estimate is favourably compared to numerical calculations and is hence used to 
optimize system design and operating conditions. A t  the optimal forcing frequency, 
for example, 100% enhancement over pure diffusion can be readily achieved. 

There is a significant practical advantage in using Lagrangian chaos to enhance 
transport rate. Since Lagrangian chaos can be achieved at  low, even creeping, flow 
conditions, the enhanced scalar transport is not associated with enhanced momentum 
transfer. This is in contrast to scalar transport enhancement by turbulent flow fields, 
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FIGURE 1. Schematic of the eccentric cylinder prototype. The local Cartesian coordinate is on the 
outer cylinder pointing inwards. The isothermal conditions are properly normalized and reduced 
such that it is unity at the outer wall (y = 0) and zero at the inner wall. The directions of the steady 
rotation of both cylinders are indicated. The parameters e and c are the eccentricity and clearance 
respectively. 

which is usually at  the expense of significant pressure drop and power expenditure. 
Low-Reynolds-number flow conditions also allow the luxury of numerical and even 
analytical optimization of system geometry and operating conditions to maximize 
enhancement. Recently, we have exploited these enhancement advantages of 
Lagrangian chaos to design an alternating-axis coiled heat-exchanger tube which 
enhances heat transfer by 10 YO with only a 3 % increment in pressure drop over the 
conventional helical coil (Acharya, Sen & Chang 1992). (See also Saxena & Nigam, 
1984, who speculated that this design can enhance heat transfer without any 
knowledge of Lagrangian chaos !) 

The prototype eccentric cylinders are shown in figure 1 with the pertinent 
geometric parameters. When the two cylinders are rotated steadily in opposite 
directions, a slender recirculation region appears and is bounded by a separatrix r 
which connects to a hyperbolic stagnation point A and is a double homoclinic loop. 
The outer separatrix is denoted r, and the inner one r-. These features of the flow 
field are clearly demonstrated in the numerically obtained pathlines in figure 2, 
where the gap width has been stretched by an arbitrary scale factor for clarity. 
Except for tracer particles on r and on the walls, particle trajectories convected by 
the steady flow field either traverse around the inner cylinder in regions 52, and 52, 
outside r or around the elliptic stagnation point B in region 52, within the double 
homoclinic loop r. We shall impose isothermal boundary conditions on the outer and 
inner cylinders and estimate the overall heat transfer across the gap. A lubrication 
analysis in the limit of small gap width allows an estimate of the flow field within the 
gap. The trajectories in Q, and Q, are almost parallel to the two walls and the 
temperature on each streamline varies linearly away from the walls to leading order 
in the dimensionless eccentricity 8. Even at high rotation speeds, radial transport 
across the gap in 52, and 52, is still dominated by diffusion. The scenario is quite 
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FIQURE 2. The steady streamlines within the gap. The recirculation region R, contains closed 
streamlines around the centre B. The separatrices r that bound a, are two homoclinic loops, r, on 
the outside and r- on the inside. The segment of r+ above A and the segment of r- below A are 
the unstable manifolds of A while the other segments are the stable manifolds. The streamlines in 
the a, and R, regions outside 52, are nearly parallel. 

different within the circulation region, 52,. Here, streamlines close to r spend 
approximately equal time near SZ, and 52, which have very different temperatures. 

We have shown that the steady enhancement at  low PBclet number Pe varies as 
1 +ape2 (Ghosh 1991) where a is a constant depending on system geometry. This is 
identical to earlier results by Moffat (1983) and Sagues & Horsthemke (1986). 
Although chaotic transport still occurs at  low Pe, it is negligible compared to thermal 
diffusion since it is induced by advection. We (Ghosh 1991) have shown that the 
time-averaged enhancement again varies as 1 + ape2. Since Pe is small, enhancement 
by either recirculation or chaotic transport is negligible at low Pe. This is 
dramatically different, however, a t  the high Pe limit when the steady cross-stream 
advection due to the recirculation and the chaotic transport due to time-periodic 
advection are far more important than diffusion. It should be noted that mass 
transfer devices necessarily operate at extremely high Pe and this is hence the far 
more important limit. 

In  the limit of high PQclet number, the circuit time of the circulation is much 
shorter than the diffusive timescale and mixing along each streamline effectively 
expels temperature gradients within this region a t  steady state. As a result, the 
recirculation region becomes a well-mixed region a t  steady state and this effectively 
reduces the radial distance for diffusive transport. Steady high-P8clet-number 
transport between recirculation cells has recently been examined by Shraiman (1987) 
and Rosenbluth et al. (1987). The same steady mixing mechanism is also present in 
these systems whose circulations are not slender. Hence, since the transport in their 
systems is between two well-mixed convective cells, the enhancement is determined 
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by a diffusive boundary layer of thickness Pew; at the boundary of the two cells. 
(Their boundaries like ours are separatrices connecting stagnation points and the 
diffusive boundary layer is similar to those near mobile interfaces with a thickness 
that varies as Pe-f; see review by Stewart 1977.) Consequently, the effective 
transport flux enhancement (or, effective diffusivity) across circulation cells varies as 
Pe-4. Although a diffusive boundary layer also exists near r in the present problem, 
it lies only interior to r on the Oi side since the temperature fields within 8, and 52, 
are not well-mixed for our nearly parallel flow. As a result, the diffusive boundary 
layer contributes to second order in the transport enhancement and a constant 
asymptote exists at high Pe in our problem. This contrasts with the large degree of 
enhancement a t  high Pe for systems controlled by a diffusive boundary layer. 

The above enhancement by a steady flow field exists only if the cylinders are 
eccentric. The recirculation region responsible for the enhancement does not appear 
when the cylinders are concentric. Similarly, stochastic particle trajectories induced 
by a time-periodic flow field also appear only if the cylinders are eccentric with 
respect to each other. This is because the time-periodic flow field is introduced by 
adding a small time-periodic component to the rotation speed of the outer cylinder. 
For concentric cylinders, the particles would simply oscillate periodically along each 
circular streamline without inducing any normal mixing between streamlines. We 
shall extract this important effect of eccentricity on the enhancement by carrying 
out an expansion for small eccentricity. With eccentric cylinders, a family of closed 
streamlines appear in 9, bounded by the homoclinic separatrix r in the steady case. 
In earlier simulations of related two-dimensional time-periodic flow fields (Broom- 
head & Ryrie 1988; Solomon & Gollub 1988; Weiss & Knobloch 1989; Rom- 
Kedar, Leonard & Wiggins 1990; Cox et al. 1990) it  was shown that time-periodic 
modulation or disturbances produce stochastic layers both within 9, and near r, 
though the stochasticity is typically most pronounced in the vicinity of r. Since the 
region within 52, has already been thoroughly mixed by the steady flow field in the 
more interesting high-P8clet-number limit, the contribution to the time-averaged 
transport enhancement of the stochastic layers internal to r is negligible at large 
time. It is the invasion of the stochastic layer around r into the 9, and 51, regions, 
owing to entanglement of the stable and unstable manifolds of the hyperbolic 
stagnation point, that allows the time-periodic flow field to enhance heat transfer in 
our system. Thus, in the context of enhancement due to the chaotic motions, the 
separatrix layer is the most important once since it mixes fluid from outside the 
recirculation region with that within it. We shall estimate the width of the separatrix 
stochastic layer external to r, which is also the layer that invades into 52, and 52, and 
we shall refer it as the stochastic layer without any fear of ambiguity. We shall also 
estimate the diffusivity within the stochastic layer arising out of the chaotic particle 
motion, which Chirikov (1979) has shown to be a diffusion process a t  an appropriate 
limit. This, in conjunction with estimates of the width of the stochastic layer, allows 
analytical estimates of the overall time-averaged enhancement in the unsteady flow 
at the pertinent limit of high Pe. As mentioned earlier, this is the extremely 
important limit of industrial concern. 

In 92, we carry out a lubrication analysis to obtain the time-dependent flow field 
in the limit of vanishing Reynolds number and small gap. The effect diffusivity for 
the steady flow field at  high PBclet number is estimated in $3, which involves a 
resolution of the diffusive boundary layer on the inside of r. In  94 we estimate the 
width of the stochastic layer for small amplitudes of the periodic perturbation by 
using the Melnikov function to construct a separatrix map (Chirikov 1979; Weiss & 
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Knobloch 1989) which further reduces to the well-known standard map. We also 
show the existence of an optimum forcing frequency a t  which the stochastic layer is 
of maximum width and the stochasticity in most pronounced. Using these same 
techniques we show that the chaotic particle motion has all the characteristics of a 
Markov diffusion process in the radial direction with zero drift and finite diffusion 
coefficient, which we obtain in the appropriate limit of the system parameters. 
Finally, the time-averaged transport enhancement at large time for the perturbed 
system is estimated a t  the high Pe limit. All estimates are satisfactorily compared to 
numerical results from direct computation of the energy equation. It is also shown 
numerically in $4 that some of our analytical results for small time-periodic 
perturbations, such as the existence of an optimum forcing frequency, remain valid 
a t  large perturbations. The results are summarized in $5.  

2. Lubrication analysis of flow in the gap 
We shall derive the leading-order flow field within the gap in the limit of small c/R 

where c is the radial clearance and R is the radius of the inner cylinder which is also 
equal to the outer radius to leading order (see figure 1). The small clearance limit 
allows a simple lubrication derivation of the flow field in closed form. A more 
complicated flow field for arbitrary clearance but vanishingly small Reynolds 
number has been derived by Ballal & Rivlin (1976). Choosing a local Cartesian 
coordinate fixed on the wall of the outer cylinder as shown in figure 1, we scale the 
azimuthal coordinate by R and the radial coordinate by c .  The azimuthal velocity is 
scaled by Rw, where wi is the clockwise angular velocity of the inner cylinder and the 
radial velocity by cwi. The dimensionless gap width is scaled by c ,  pressure by 
~ , ( R / c ) ~  and time by l / q .  In terms of the scaled variables, two independent 
parameters appear in the equations of motion, the Reynolds number Re = c2 wi /v  and 
the dimensionless clearance A = c/R < 1. Here ,u is the viscosity and v the kinematic 
viscosity of the fluid. We shall assume Re is of O(A)  and to leading order in A, namely, 
O(Ao) it does not enter the analysis. For the perturbed flow, we shall require the 
modulation frequency to be in excess of q, w D 1, to allow a multi-time scale 
expansion. For the lubrication approximation to remain valid, we must then have 
the clearance to be small such that c 2 0 / v  remains of O(ho). Under these conditions, 
the equations of motion and the pertinent boundary conditions are 

aP - = 0 ,  
aY 

u ( y  = 0 )  = -8(1 +asinwt), 

u(y = h) = 1, 

v(y = 0 )  = 0, 

dh 
dx 

W ( ~ J  = h) = -, 

(2.3) 

p(x = 0) = p(x = 2n) = 0, (2.8) 
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where x is the scaled azimuthal coordinate of the local Cartesian coordinate whose 
origin is at  the widest portion of the gap, y is the scaled radial coordinate, and u and 
w are the dimensionless velocity components in the azimuthal and radial direction 
respectively. The parameter S is the ratio of the steady outer rotating speed to the 
inner rotating speed. It is a positive parameter and the rotation is clockwise at the 
outer cylinder. The parameter oc is the amplitude of the periodic perturbation and w 
is the dimensionless forcing frequency scaled with respect to wi. Since both the 
pressure and flow fields are 2.11: periodic in z and the pressure field is defined up to an 
arbitrary constant, we choose (2.8) as a reference pressure. The dimensionless gap 
width h(x) is, to leading order, 

h = 1 +scosx+O(h). (2.9) 

The dimensionless eccentricity, e = e/c, is a small parameter less than unity where e 
is the eccentricity between the two cylinders. Thus e is independent from the 
dimensionless clearance A. We shall examine the case where e is of a larger order than 
h such that the analysis is up to O(ho) and O(e). In the subsequent analysis we shall 
carry out multiparameter expansions in several independent small parameters. 
Relative orders of these parameters must then be specified such that a consistent 
resolution is achieved. We shall, however, limit ourselves to zeroth order in A. 
Consequently, the radius of the inner cylinder must be sufficiently large relative to 
the clearance such that h is smaller than all other small parameters in our problem. 
In what follows, it will be understood that all expansions are valid to O(Ao) and 
specific mention of h will be omitted for simplicity. In contrast, since the eccentricity 
e is responsible for both the steady and the time-periodic enhancement, its expansion 
will be carefully carried out. 

The lubrication equations, (2.1)-(2.9), are solved to these orders to obtain the flow 
field. It is convenient to express u and w as 

u(z, y, t) = S ( X ,  y) +a&(z, y) sin wt 

= ~ ~ ( y ) + s t ~ , ( z , y ) + a [ ~ , ( y ) + ~ & ~ ( z , y ) ]  sinwt+O(s2), 

w(x, y, t)  = m1(z, y) + oc[dl(z, y)] sinwt + O(e2), 

where the time-independent and time-dependent components have been separated 
for clarity. These are given by 

So = (l+S)y-S, (2.10a) 

Go = S(y- l), (2.10c) 

dl = S(2ycosx-3y2cosx), (2.1Od) 

(2.11 a) 

8, = S[y2(1 -y) sinz]. (2.11b) 

We note that u is of O(eo) while w is of O(el) since the small radial flow in the slender 
recirculation bubble, which is chiefly responsible for both steady and perturbed 
enhancement, is created by eccentricity. Because inertia is negligible, the flow field 
reacts instantaneously to the perturbation at the outer cylinder. This time-periodic 

4, = 3(1-S) y2 cosz+2(6-22) y COB 2, (2.10b) 

= (1 - 6) ys sin x+ (S-2)y2 sin z, 

5-2 
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two-dimensional flow field can be conveniently expressed in terms of a stream 
function 

(2.12) $(x, Y, = &x, Y) + a$(., Y, t )  9 

where the steady component is expressed as 

3 ( x ,  Y) = $O(Y)+$l(”, Y ) + 0 ( E 2 ) >  (2.13a) 

with $,(?I) = ~ y - ~ ( ~ + W ,  (2.13 b)  

q ( X ,  y = (2 - 8) y2 cos x- (1 - 6) y3 cos x, (2.13 c) 

and, similarly, the perturbation 

A x ,  Y, t )  = + &(x, y) + O(E2), 

with $o(Y) = 6[2/(1 -&I)] sinwt, 

y) = S[y2(y - 1) cos 21 sin wt. 

The equations of motions are then formally that of a Hamiltonian system, 

( 2 . 1 4 ~ )  

(2.14 b)  

( 2 . 1 4 ~ )  

(2.15) 

(2.16) 

and the stream function $(x, y, t )  is the Hamiltonian. 
We shall further examine the steady flow field with a = 0. For every azimuthal 

position x there is a radial location y*(x) in the flow where the steady azimuthal 
velocity a vanishes. At x = 0 and x = x this point becomes a stagnation point as 
both and B vanish at y+(x = 0) and y*(s = 7c). Thus, for small values of E and all 
values of 6 considered there are exactly two stagnation points in the flow field: a 
hyperbolic stagnation point, A ,  located at  the narrowest part of the gap, given by 
yA = y*(x = n), and an elliptic stagnation point, B, located at the widest part of the 
gap, given by yB = y*(x = 0). The radial location of y* at every x is given by 

6 6(62-6+4) 
y*(x) = -+€ cosxfO(s2). i+s  (1+6)3 

A is at  x = x with radial location 

+ O(E2) 
6 6(P--6+4) 

E 
YA = 1+6- (1 +6)3 

while B is at x = 0, with radial location 

6 6(62-6+4) 
yB = - + e  + O(s2). 

I + &  ( 1 + 4 3  

(2.17) 

(2.18) 

(2.19) 

Clearly, A and B have the same radial location to leading order. Thus, in the 
concentric case with E = 0, the double homoclinic loop r collapses into a concentric 
ring at y = 6/(1 +S), which is a degenerate circle of stagnation points. At 6 = 0 the 
flow consists of periodic orbits with no stagnation points and no turning points ; there 
is no circulation region and every tracer particle winds around the inner cylinder. 
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Hence, at  6 = 0, both A and B are located at  the outer wall and they move towards 
the inner wall as S increases, with A always at x = x and B at x = 0. At 6 = 1 the flow 
field has a high degree of symmetry: A is located dead centre at  x = x with 
yA = +( 1 - E )  and B is located dead centre at x = 0 with yB = )(1 + E ) .  As 6 increases 
beyond unity, A and B move slowly towards the inner wall and at  6+ 00 they are 
located at the inner wall. 

As shown in figure 2, the family of closed streamlines around B converge to the 
separatrix rwhich is connected to the hyperbolic stagnation point A. This separatrix 
r is a double homoclinic loop of the fixed point A with the branch near the outer wall 
denoted as r+ and the branch near the inner wall denoted as r-. The r+ loop in figure 
2 is depicted with a stroboscopic map of a marked fluid element near A. As shown, 
there is considerable stretching as the fluid element departs the saddle points which 
is evident from the larger spacing. This stretching and a subsequent folding 
mechanism introduced by the homoclinic tangle are responsible for the Lagrangian 
chaos. We obtain an estimate of the radial location of either branch of r and, 
consequently, the width of the circulation region bounded by r, by expanding the 
steady stream function about y*(x). For every given azimuthal position, x, we 
expand $ of (2.13) about y*(x) of (2.17) 

Expressing y,(x) as 
y*(z) = yp+€yp(2)+0(2)  (2.21) 

where y$') and yg) are obtained from (2.17), we have from (2.20) 

$(x, Y) = $o(Y'*o') + i ( Y  - Y*I2 2 ;; lu-ut) +s$,(x,Y!O))+O(E(Y-Y*)2)+0(E2). (2.22) 

By stipulating that the stream function on the double homoclinic loop r must be 
identical to that at the hyperbolic point A,  $(x ,  yA), we obtain an expression for the 
width of the circulation bubble at  every azimuthal position, x. We require, for any 
(x,y*) on r, where y*(x) is the radial location of the two branches of separatrix r, 

where y2) and yy) are obtained from (2.18) 

llr(x, Y A )  = $o(Ya) + .$Ax, Y A )  

= $o(ya"') + qkl(x, y y )  + O ( E 2 ) .  
Since y$" = y2), (2.23) gives 

(2.23) 

(2.24) 

(2.25) 

= f dy,(z, 6) + O(d)  

where 

(2.26) 

(2.27) 
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For any azimuthal position x, the radial coordinate of the separatrix r is then given 

y* (2) = ysp’ f €y,(x, 6) + sy:“ + O(€i), (2.28) 

where the & signs refer to the inner and outer branches of the double homoclinic loop 
respectively. It can be shown quite easily that the next term in (2.26) is indeed O(d),  
which explains the specific form of (2.28). Hence, the circulation region has a width 
of O(& and the width at any azimuthal position, W(x), is given by 

by 

W ( 4  = 2lY*(4-Y*(X)l, 

W ( z )  = 2dy,(x, 6) + O(d) ,  
which is, to leading order, 

(2.29) 

(2.30) 

where y,(x, 8)  is given by (2.27). As expected, W(x) vanishes at  the narrowest part of 
the gap, x = n, and is maximum at the widest part of the gap, x = 0. Moreover, the 
width exhibits a maximum a t  a speed ratio of 6 = 1. To leading order in 8 ,  yA, yB, y* 
and y* are identically equal to 6/( 1 + 6) and we shall refer to this quantity as ys for 
convenience where s denotes stagnation. 

A more accurate lubrication approximation, which involves an expansion only in 
the clearance h and not the eccentricity 8, can be derived using the two-dimensional 
bipolar coordinates (C, 7) instead of the present local Cartesian coordinates. Bipolar 
coordinates are a natural choice of coordinate system for planar flow between two 
eccentric cylinders since the boundaries are exactly represented by curves of 
constant 7. To O(ho), the velocity field in terms of the bipolar coordinates ( g ,  T ) ,  
where C is the azimuthal coordinate and 7 is the radial coordinate, are 

where, at  h + O ,  the inner wall is represented by = T ~ ,  the outer wall by 7 = v0, and 

(2.33) 

(2.34) 

The derivatives of pressure, p ,  with respect to the azimuthal variable are 

-6  

Ti 
pc  = [l - 6( 1 + a sin ot)] [cos C+ a2 gcos 2 0  - 2 cosh qo cos [)I, (2.35) 

-6  

T i  pa  = [ 1 - 6( 1 +a sin wt) ]  [ - sin [+a2( - sin 25)], 

2 cosh q,, 
1 + 2 cosh2 yo * 

a2 = 

(2.36) 

(2.37) 

We shall use the simpler Cartesian version of (2.10) and (2.11) in our asymptotic 
analysis of the heat-transfer problem. The more accurate expressions in (2.31) and 
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(2.32) will be reserved for the numerical studies and simulations of the flow. It can 
be easily verified that in the limit of small eccentricity, E ,  the two flow fields become 
identical. 

3. Steady enhancement at high Pe 
We shall study the enhancement in heat/mass transfer in terms of an effective 

diffusion coefficient, like a Nusselt number, for time and azimuthally averaged 
diffusion flux across the gap in the radial direction. The coefficient of effective 
diffusion is normalized with respect to the diffusivity, D .  We define 

where a bar denotes integral over the azimuthal direction and ( ) denotes time- 
averaging. The quantity <&,,,,) is the time-averaged total heat flux across the gap 
and (Qconduction) is the corresponding quantity in the absence of convection for 
concentric cylinders. Therefore, (Derp/D) is unity for a concentric cylinder. Note that 
(Dep,) is appropriate only after the initial transients have died and the flux is either 
steady or time-periodic. For simplicity, we shall abuse notation and use Deep to 
represent the steady effective diffusion. 

The dimensionless energy equation can also be simplified by a lubrication 
approximation which exploits the small clearance of the gap. To O(Ao) and in local 
Cartesian coordinates, it becomes 

where the dimensionless T is related to the dimensional one, @, by 

F- Ti T = -  
To- Ti ’ (3.3) 

and, Ti and To are the temperatures at  the inner and outer walls respectively, with 
To > Ti for convenience. The PBclet number, Pe, is c2w,/D. The pertinent boundary 
conditions are then 

T ( y  = 0 )  = 1, (3.4) 

T(y  = h) = 0. 
At steady state (3.2) reduces to 

(3.5) 

with the same boundary conditions. 
Both the steady and perturbed flow fields yield insignificant enhancement at low 

Pe. A regular perturbation in Pe produces the classical result of Depp = D( 1 +a Pe2) 
for both steady and time-averaged enhancement where a is a constant depending on 
system geometry (Ghosh 1991). This is quite different, however, a t  high Pe. 
Batchelor (1956) has suggested that, a t  high PBclet numbers, the steady-state 
temperature field within a separated recirculation region like SZ, is completely 
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uniform owing to fast mixing along the streamlines. Similar studies have been carried 
out by Rhines & Young (1983) and Young, Pumir & Pomeau (1989). We shall show 
that, after proper rescaling, this is also true of the present system and different 
expansions are then required for inside and outside 52,. We shall carry out a leading- 
order asymptotic expansion of the steady-transport equation both in the diffusion 
dominant outer regions and the advection dominant recirculation region. The 
expansions are then matched at the separatrices where azimuthal advection matches 
radial diffusion. 

3.1. Recirculation region 
The scalings leading to (3.6) are appropriate only for the outer Ql and 0, regions 
where conduction dominates. Within the recirculation region Oi, the velocity scales 
and lengthscales are different PBclet number results. Linearizing the steady flow field 
about the elliptic stagnation point, B ,  yields a pair of purely imaginary eigenvalues 

which indicates that the circulation around B becomes more rapid with increasing 8 
and 8. Solving for the eigenvectors associated with the eigenvalues of (3.7) yields the 
following parametric dependence of the steady flow, 

E 7 €4?, ( 3 . 8 ~ )  

and V, in the vicinity of B 

(3.8b) 

Clearly, for arbitrarily small E or arbitrarily small 6, the recirculation bubble is no 
longer a well-mixed region a t  steady state. Equations (3.8) suggest rescaling a and 
B into the new scaled variables ii and v", 

ii = a/€+&, (3.9a) 

(3.9b) 

Equations (3.7) and (3.8) also provide the appropriate lengthscales in the vicinity of 
B. They are 

f = x, ( 3 . 1 0 ~ )  

(3. lob) 

This is consistent with the width of the recirculation bubble, as given by W ( x )  of 
(2.30), which also varies as &I/( 1 The rescaled steady-state energy equation 
within the recirculation region 0, is then 

(3.11) 

where Pe is the appropriate PBclet number within 0, and is related to the global 
PBclet number, Pe, by 

(3.12) 
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We shall carry out the expansion in l/l?e which then stipulates that 
Pe S E - % ~ .  The leading-order equation within 51, in the limit of 1 / P e  approaching 
zero is then 

= 0, (3.13) 

where z is the unit normal perpendicular to the (2, y)-plane and 6 is the steady-state 
stream function in a,. Hence, the streamlines are identical to the isotherms and T is 
a function of @ only to leading order, 

T = T($). (3.14) 

However, integrating the steady-state enerey equation over the domain interior to 
a closed streamline L with streamfunction @o and invoking the divergence theorem 
yields 

$Ln-VTdl = 0. (3.15) 

Since, at  steady state, there is no accumulation and no convection across L, the total 
diffusive flux must then vanish exactly. However, V T  = (dT/d$) V$ from (3.14) and 
the zero flux conditions of (3.15) yields 

(3.16) 

since 6 = &, along L. Because the unit normal n is V&/lV&\, the line integral 
$L n- V$ dl is simply $LIV$l dl which is non-zero. Consequently, 

dTI 
d$ s-6 

must vanish and the normal temperature gradient vanishes at every point on L. 
Since L can be any arbitrary closed streamline, T must be uniform in the interior of 
a,. The above is just a mathematical delineation of the physical fact that any steady- 
temperature field which depends only on the streamfunction must be uniform within 
a closed streamline. Since, at high Pe, the temperature within 52, is constant, it must 
be equal to the temperature at  the hyperbolic stagnation point A .  Consequently, at  
large P e ,  the temperature within 51, is equal to that at  the hyperbolic stagnation 
point to leading order and at steady state. 

3.2. Outer diffusive regions 

We shall also carry out a leading-order analysis of the 52, and 52, regions with nearly 
parallel flow. Expanding T as 

T =  T o + e T I + . . , ,  (3.17) 

the energy equation (3.6) yields to O(EO), 

(3.18) 

where go is given in (2.10) and the original scalings of $2 are appropriate here. 
Equation (3.18) is valid for all orders in Pe-l. However, regardless of the magnitude 
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of Pe-', the only solution to (3.18), in both 51, and a,, is a purely conductive 
temperature profile linear in y .  We have hence shown that the local radial 
temperature profiles a t  every azimuthal position x are linear in the Q, and a, regions 
in spite of the high convective contribution. This is because the convection is 
orthogonal to the direction of heat flux to leading order here. Since, to leading order 
in the eccentricity, both 51, and 52, are diffusion dominant parallel flow regions with 
a linear conductive temperature profile, the temperature at  the hyperbolic point A ,  
denoted by Ti, is easily obtained 

(3.19) 

where, to be consistent in our resolution, we omit the O(s) term and ys = 6/(1+6) is 
the leading-order estimate of the radial location of A in (2.18). 

3.3. Zero-order estimate of steady enhancement 
A zeroth-order theory for steady enhancement can immediately be obtained from the 
previous leading-order analysis of the convectively dominant 51, and the diffusivity 
dominant 51, and 51,. Imposing boundary conditions (3.4) and (3.5) and using (2.28) 
to estimate the radial location of separatrix r, one gets at every azimuthal position, 
the profile 

(3.20 a)  

(3.20 b)  

(3.20 c) 

where y+ and y- are the boundaries r of the circulation region D of (2.28) and h of 
(2.9) gives the location of the inner wall. We shall only retain O ( S )  terms in y * ( z )  of 
(2.28) in the leading estimate. Thus 

i 

and 

( 3 . 2 1 ~ )  

(3.21 b)  

( 3 . 2 1 ~ )  

It is evident that the uniform region in Di will enhance the flux by an amount which 
varies as d. This can be easily summarized by a steady enhancement defined in terms 
of effective diffusivity, as in (3.1), and denoted here by &/I), 

D% - - 1 + -  - " r y r ( x , 6 ) d z + O ( t ) .  
D 2XYs 0 

(3.22) 

Inserting yr from (2.27), we obtain the steady enhancement to O(&) in the 
eccentricity, 

Qf €+42/2 -(€,a)= l+- 
D It( 1 + 6) + 

(3.23) 

We note that P e  is the appropriate PBclet number in 51, and (3.23) holds only for 
pe+co. Consequently, from (3.12), (3.23) does not hold in the limit of E + O  or 6+0. 
From $2, we know that at 6 = 0 all trajectories in the steady flow wind around the 
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FIGURE 3. The numerically computed temperature profile at the largest clearance (3 = x = 0) in the 
bipolar coordinate. The outer wall is at 7 = 0 and the inner wall 7 = 1. The recirculation region R, 
is also indicated. Note the diffisive boundary layers lie on the R, side of r. Parameter values are 
Pe = 5oO0, E = 0.2 and 6 = 1.0. 

inner cylinder and thus there is no enhancement irrespective of the magnitude of Pe, 
or P e ,  i.e. (D&/D) la-,, = 1. Equation (3.23) does not reduce to this result in the 
asymptotic limit of S+O because S+O is not a valid limit at large P e .  

If we include the O(s) terms in T,, then 

Ti = 1 - ? j 8 - ~ ( y f ) + y T ) ) + O ( ~ 2 ) ,  (3.24) 

where both y f )  and y$) are obtained from (2.18). If we also include the O(s) 
contributions from y+(x)  and y-(xl in (2.28) and h(x)  of (2.9), then the steady 
enhancement to zeroth order in l /Pe and to O(s) is 

- 

D2f- 1+J 4 d 2  ]+O(B,. 
D x(1 +S) 

(3.25) 

In figure 3, we depict the temperature profile a t  x = 0, computed with a finite 
difference scheme from the energy equation using the more accurate bipolar flow 
fields of (2.31) and (2.32) with Pe = 5000 which yields a P e  = 27.95 for s = 0.2 and 
S = 1.0 of figure 3. Owing to the instability of the finite-difference scheme for nearly 
hyperbolic systems, we are unable to increase P e  or Pe further. As evident, however, 
the estimated profile of (3.20) provides a satisfactory leading-order approximation of 
the actual values in spite of this relatively low pe. At the conditions of figure 3, the 
hyperbolic stagnation point is located dead centre to leading order in B at x = 7c with 
yA = y, = 0.5. Thus, the temperature Ti at this stagnation point is estimated to be 
0.5 by (3.19). From figure 3, it is clearly evident that the uniform temperature within 
52, is indeed equal to Ti and extends almost right across the width of Q, at this 
azimuthal position of x =  0. This validates the predictions of our zeroth-order 
theory. 

3.4. Boundary-layer analysis and higher-order estimates 
Two boundary layers are clearly evident in figure 3 on the interior of r+ and C (their 
radial locations are marked by two straight lines) where the conductive regions 0, 
and 52, meet the convective regions 52,. In these boundary layers the regular 
perturbation solution of (3.11) breaks down as the right-hand side of the equation 
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contributes significantly within this narrow layer interior and adjacent to r. Here 
derivatives with respect to ij become large in order that the zero first derivative of 
temperature well within SZ, matches to a finite but constant value in 52, and 52,. In 
physical terms, since there is a finite uniform flow along r, conduction normal to the 
streamlines is balanced by streamwise convection in these boundary layers as in 
boundary layers beneath a mobile surface (Shraiman 1987). Consequently, the 
'dominant balance ' arguments (see Stewart 1977) yield a boundary-layer thickness 
of Pe-4 along r. In the subsequent boundary-layer analysis, we shall resolve these 
diffusive boundary layers to improve the estimate of enhancement in (3.23) by 
obtaining the first correction due to a large but finite Pe .  We shall, however, carry 
out the expansion in Pe-l since the velocity scalings of the parallel flow regions are 
more appropriate in the boundary layers. To ensure a gradientless circulation region, 
it will be understood in what follows that E and 6 must have sufficiently large values 
such that F e  is also large. We rescale the local Cartesian coordinate normal to the 
streamlines by Pe-4 for the boundary layers. Since r only exists for eccentric 
cylinders, the location of the separatrix varies with x and care must be taken to 
account for its €4 s-dependence. We introduce a rescaled normal coordinate defined 
by the steady stream function 9, valid to O ( E ) .  

u = Pei($ - $,.I, (3.26) 

where gr is the stream function on r and at  the hyperbolic point A ,  qf = $(n, ya), 
and us[O, 00). The tangential coordinate 7 is defined by 

(3.27) 

In terms of this local Cartesian coordinate along r, the steady-state energy equation 
of (3.6), where ti and B are valid to O(s) ,  becomes 

The metrics lV$12, a$/ay, (a2$/ay2) and &/ay are all evaluated along r. From (2.13), 
it can be readily seen that 

(3.29) v - - O ( 4 ,  ax 

and hence (a$/ax)2 is O ( 2 )  and can be omitted. Consequently (3.28) reduces to 

Close to the separatrix r, 3 can be linearized in y to give 

9 = 9r++r(x) (Y-Y*(X)), 

where y*(x) gives the radial location of separatrix r, and 

(3.31) 

( 3 . 3 2 ~ )  

(3.32 b)  
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where 
28 

( 1 + 4  
$$x) = +-(l+coSx)t, ( 3 . 3 2 ~ )  

and the f signs refer to the outer and inner branches of the double homoclinic loop 
r, respectively. From (3.27), (3.29) and (3.32) 

(3.33 a )  

ez(l-sin$)+O(e) (0 < x < x )  (3.33 b )  

(3 .334 ( x  < x < 2x1 ,  

where the hyperbolic stagnation point A is chosen to be the origin of 7.  Once again, 
the k signs correspond to r+ and C respectively. 

The boundary-layer equation of (3.30) resembles a transient diffusion equation to 
leading order. In  the normal directions, its solutions must match into the uniform 
field in the interior of 52, and the linear profiles of ( 3 . 2 0 ~ )  and ( 3 . 2 0 ~ )  in B, and Q2. 

For simplicity, we shall detail only the resolution of the outer boundary layer along 
r+. The normal boundary conditions there are then 

( 3 . 3 4 ~ )  

(3.34 b )  

In (3.343), (T(a = 0 )  - i)/y+(x) is simply the slope of the linear diffusive profile in S Z ,  
since y+(z) is the width of 52,. This then must be equated to aT/ay in the diffusive 
boundary layer which is $,P& (aT/aa) through the scalings of (3.26) and (3.31). 
Since we are interested in only the leading-order contribution of the eccentricity B at 
every order of the expansion in Pe-l, we shall retain only those terms in the 
boundary layer equations which contribute to leading order in B .  Thus, expanding 
(3.343) in e after substituting (2.28), one obtains 

(3.35) 

where $t(x)  is given by (3.32c), y, by (2.27) and y, = S / ( 1  +S) is simply the leading- 
order estimate of yA. We note that while the second €4 term in the square bracket is 
much smaller than the unity first term, it must be retained to include the effect of 
the recirculation region. The first term, to leading order in Pe-l, will simply yield the 
unit flux of the purely diffusive linear profile after proper transform to the y- 
coordinate. 

The width of the circulation bubble, W(x) of (2.30), is a function of azimuthal 
position x and is zero at the hyperbolic stagnation point A at x = K. Consequently, 
there is an azimuthal neighbourhood of x = z  where the circulation region is of 
negligible width and the linear profiles of (3.20) extend right across. However, we 
cannot determine the width of this azimuthal neighbourhood, Ix=xI, since the width 
W(x) decreases very rapidly to zero as we approach x = x from either side. In fact, 
dW(s)/dx approaches infinity at  z = x .  Consequently, there is an infinitesimal 
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azimuthal neighbourhood near A ,  whose size we cannot determine, where the 
circulation is negligible and the linear profiles, (3.18~) and (3.18~) in 52, and a,, 
collapse into one continuous linear profile extending from the outer to the inner wall. 
Hence, to match the boundary-layer solution T of (3.30) to the 'initial' boundary 
layer near A ,  one must have 

T ( r  = 0 )  = Ti (3.36) 

given, to leading order, by (3.19). 
Equation (3.30) with 'initial' and boundary conditions (3.34)-(3.36), which are 

valid to O(d) and O(Pe-i), can be easily solved with an expansion in P e t ,  

(3.37) T N T0+T;Pe-f+T,Pe-l+ ... . 
Here To is the leading-order term in the expansion within the boundary layer in 52, 
and should not be confused with To of (3.18) which denotes the leading term within 
52, and 52,. The leading-order equations, 

T0(r = 0 )  = 1 -ys, 

aT0 - (u  = 0)  = 0, 
a7 

(3.38) 

(3.39~) 

(3.39 b) 

(3.39 c) 

simply yields the uniform temperature profile To = 1/1 +S = 1 -ys of (3.19) in our 
previous leading-order analysis. In fact, in the present analysis, the flux is identically 
zero as indicated in (3.39~). To obtain the correct flux, we proceed to the next order, 
O(Pe-41, 

(3.40 a) 

T;(7 = 0 )  = 0, (3.40b) 

(3.40~) 

(3.40 a') 

It is clear from (3.40~) that the first unity term in the square bracket corresponds to 
the purely diffusive flux while the second term yields the leading-order effect of the 
recirculation region. Upon integration over the entire gap, one simply obtains the 
previous result of (3.22). The effect of diffusive boundary layer still has not entered 
the analysis. This must now be contained in the T ,  equation whose boundary 
condition at t~ = 0 is simply 

(3.41) 
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o Numerical t 
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FIQURE 4. Comparison of the estimated steady enhancement a t  varying degree of resolution to 
numerical values at E = 0.2 and 8 = 1.5. Estimate (3.23) is the asy8mptotic enhancement at infinite 
P e  yalid to O(E) .  estimate (3.25) is the same palye correct to O(@).  Estimate (3.42) describes the 
Pe-r dycaylfrom the mymptote valid to O(E, @ Pe-i, Pe-’) and the shift up improves its accuracy to 
O ( E ~ ,  dPe-3, Pe-’). The estimate (3.49) is a more tedious ‘expansion’ valid to O ( 8 )  and O(Pe-’). 

We have omitted the higher-order terms in 8 in this Pe-’ order. The leading-order 8 

term is already contained in (3 .40~) .  The effective steady enhancement is then 
obvious from ( 3 . 4 0 ~ )  and (3.41) 

Comparing to (3.23), it is clear that the third term in (3.42) determines the 
contribution of the diffusive boundary layers and it specifies that the enhancement 
decays by Pe-i from the infinite Pe asymptote of (3.23). 

Quantitative evaluation of this term requires the solution of Ti(7, CT) in (3.40). This 
can be easily achieved by the usual Green function technique 

where 

(3.43 a )  

(3.43b) 

and x(7) is obtained by inverting (3.33). It is then an easy matter to compute 

ran 
J T;(r  = O)dx 

0 

from (3.43). (In fact, the &yr(x) term can be safely neglected in (3.43b) but since the 
resulting integral must still be evaluated numerically, we retain it for completeness.) 
In figure 4, we compare the predictions by (3.42) to our finite-difference solution of 
the steady-state energy equation (3.6) in bipolar coordinates with flow fields (2.31) 
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and (2.32) for E = 0.2 and S = 1.5. It is clear from the figure that the enhancement 
approaches the asymptote 1.32 predicted by (3.23). The numerical result follows the 
same trend but is off by a constant value of approximately O(s) a t  large Pe. If we 
include the O(s) correction of (3.25) to (3.42), the error is reduced to 
O(d) a t  large Pe as expected. The asymptote in this case is 1.43 and the two curves 
are simply shifted by the s term in (3.25) which is 0.11 for the geometry in question. 
This approach to a constant asymptote a t  high Pe as distinct from unbounded heat- 
transfer problems controlled by a diffusive boundary layer where a Pea behaviour 
appears for a mobile surface and Pei as asymptote exists for a solid one. 

We conclude this section by obtaining a more accurate estimate of D,"/D by 
employing a higher-order estimate of the boundary-layer equation (3.30) in E. Here, 
we do not employ the d estimate of the separatrices and the location of the 
hyperbolic stagnation point yA but instead use the values from the steady flow of $ 
in (2.13) which is valid to O(s). However, this higher resolution in E necessitates a 
numerical solution instead of the convenient closed-form solutions of (3.32), (3.25) 
and (3.42). The flux a t  the wall is now given by 

where Ti(7, a) is given by (3.43), with 

The enhancement, Deff/D, is then given by 

with 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

= Q1 + Pe&, + O(Pe-l), (3.49a) 

(1 4): 2n 1 -Ti = T I o  Y t O d x ,  

( 1 - € 2 ) i  2 q ( a  = 0) 
Q 2  = TJo y+(x) dx . 

(3.493) 

(3.49 c) 

Using 3 of (2.13), valid to O(s), the radial locations of the hyperbolic stagnation point 
A ,  yA, and that of r+, y+, are all obtained numerically. These are inserted into (3.45) 
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and (3.46) to solve for T+(a = 0) and Q1 and Qz to obtain the steady enhancement 
D,,,/D. While the solution (3.49) is more involved, its estimates of the enhancement 
is in excellent agreement with the numerical value as evident in figure 4. 

4. Analysis of the periodically forced system and time-averaged 
enhancement 

An oscillating rotation speed of the outer cylinder introduces a time-periodic 
perturbation which gives rise to chaotic particle paths (Aref 1983, 1984). A particular 
Poincar6 section of the flow is the time-T map, .ZT, with T = 2n/w which is the time- 
period of the periodic perturbation. For the steady flow, a = 0, a time-T map is then 
snapshots of tracer particles travelling along streamlines and would reproduce figure 
2. In figure 5 we show a Poincar6 section of the perturbed flow at large time which 
has been perturbed with a forcing amplitude of a = 0.5. All Poincar6 sections are 
obtained using the flow field in bipolar coordinates. The chaotic dynamics evident in 
the figure has the characteristics of Hamiltonian chaos like homoclinic tangles and 
Cantori etc. Since these have been mostly well studied and documented for such 
systems as ours (Aref & Balachandar 1986; Solomon & Gollub 1988; Rom-Kedar 
et al. 1990), we shall not reproduce them here. It is also evident from figure 5 that, in 
certain distinct regions of the flow domain, the time-T map has no smooth invariant 
curves or manifolds unlike that in the steady case and fluid elements wander across 
the separatrix r in a random fashion. Nevertheless, this chaotic or seemingly random 
motion is bounded within a stochastic layer for small a. Outside the stochastic layer, 
particle paths in 51, and 52, may still trace out closed, near-concentric circles even 
though there is a periodic azimuthal variation. Within a,, the family of closed 
streamlines around the elliptic point B are also perturbed producing a series of thin 
chaotic layers, bounded by impenetrable Kolmogorov, Arnold & Moser (KAM) 
curves which are invariant curves of the time-T map. As the amplitude of the 
perturbation is increased, there are fewer regular domains and the stochasticity 
becomes more widespread owing to the disintegration of KAM curves. The analysis 
of 53 shows that, at the high Pe limit, the steady flow field effectively expels any 
temperature (or concentration) gradient within 52, at steady state. Thus, in the 
unsteady flow, chaotic layers within 51, will not contribute significantly to the time- 
averaged transport enhancement in this limit of Pe after the initial transient. 
Consequently, we shall focus on the chaotic layer in the vicinity of the separatrix r, 
which we refer to as the stochastic layer without fear of ambiguity to estimate 
transport enhancement due to chaotic mixing. 

The physical mechanism underlying chaotic transport enhancement is quite 
evident from figure 5. In the steady problem of the previous section, it is clear that 
the major resistance to steady transport occurs at the diffusively dominant outer 
regions 51, and a, and at the boundary layer near the separatrix. In contrast, there 
is negligible resistance within the recirculation region 52, because of the mixing effect 
of recirculation. The stochastic layers near the separatrices in figure 5 then cause 
additional mixing in the critical areas by introducing stochastic particle motion. 
They allow fluid elements to cross the bounding separatrices and increase the local 
diffusion rate in the regions where they invade into 51, and SZ,. Hence, to estimate 
chaotic transport enhancement, we shall need to obtain the width of the stochastic 
layers and the effective diffusion rate within the layers. Moreover, since the effect of 
chaotic enhancement is not important deep in 51, at high Pe because of the 
dominance of advection mixing there, the major contribution of chaotic mixing 
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FIGURE 5. A Poincar6 section (stroboscopic map) of the periodically forced system where the 
particle locations from a series of initial conditions are recorded after a period equal to the period 
of the forcing function. Notice that the stochastic layer around r is bounded since a, closed 
streamline around the inner cylinder is still evident in 0,. Kotice also the stochastic layers around 
the KAM islands within 0,. Parameter values are a = 0.5, E = 0.2, 6 = 1.0 and w = 0.3. 

occurs near the separatrix at  high Pe. Hence, the enhancement by wide stochastic 
layers under large-amplitude forcing is expected to be well approximated by a thin- 
layer theory for weak forcing. We shall show that both the width and the effective 
diffusion within the stochastic layers can be obtained analytically by studying the 
trajectories near the separatrices under the influence of weak periodic forcing. Our 
theory involves the local construction of a map near the separatrix and the relative 
insignificance of the particle motion away from the separatrix allows us to use this 
local map in spite of its inaccuracy after a large number of iterations when the 
trajectory has moved far away (Rom-Kedar 1990). We then combine the result with 
the steady enhancement of the previous section to yield an overall time-averaged 
enhancement rate. A surprising result of our analysis is that we can then optimize the 
forcing frequency to maximize chaotic enhancement, a task that seems exceedingly 
difficult at first glance because of the complexity of the process. That a finite optimal 
frequency exists is also surprising and this is important in future practical 
application of chaotic transport enhancement. Consistent with the above speculation, 
we show that our prediction of the optimum frequency from a weak forcing theory 
remains valid at  strong forcing. Our analysis also reveals how the enhancement 
varies as a function of forcing amplitude. 

4.1. Construction of separatrix and standard maps near the separatrices 
For small amplitudes of perturbation, a 4 1.0, the behaviour of the trajectories near 
the separatrices under the influence of periodic forcing can be estimated from a 
separatrix map or whisper map (Chirikov 1979; Weiss & Knobloch 1989) which 
reduces to the standard map for forced oscillators. The separatrix map is used to 
examine the dynamics of particle motion in the outer neighbourhood of r. The map 
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is constructed by considering the change in the stream function $ over successive 
crossings of a surface fixed in the physical space. The surface Z is placed along a 
radial line of x = 0 and the separatrix map is therefore a Poincare' map for the stream 
function $ of a particle trajectory near r as it interests the x = 0 radial position at 
every circuit. For the steady flow field (a = 0), this Poinear6 map is just trivially the 
identity map. At a =+ 0, it can b? seen from (2.12), that the time dependence in 
$(x, y, t )  is entirely contained in a$(x, y, t ) .  Since a$(x, y, t) is periodic both in x and t ,  
its variation is bounded and small for a 4 1.0. Hence, following Chirikov (1979), we 
compute changes in only the leading-order aperiodic steady part of +, $(x, y), after 
each circuit. If the value of $(x, y) is 1F" a t  the nth crossing of the surface Z, its value 
at the next intersection is given by 

where the $ value is understood to be at x = 0 and the integration is along the branch 
r of the unperturbed double homoclinic loop, which is an approximation valid only 
in the neighbourhood of r. Since the double homoclinic loop has two branches, r+ 
and C,  the surface of section map of (4.1) will depend on the particular branch in 
consideration and r can denote either the outer branch r, or the inner branch C. 
Clearly (4.1) will not be valid for orbits within a,, since they alternate from the 
vicinity of r+ to the vicinity of C and the integration cannot be carried out along 
a specific branch of r. Fortunately, as stated earlier, only the outer neighbourhood 
of r is pertinent since the inner side within 52, is already gradientless owing to high 
P e  steady enhancement. Inserting (2.13) and (2.14) into (4.1), one obtains 

p + 1 =  +&At;), (4.2) 

(4.3) 

The wedge product is defined by (f,, f,) A(gl, 9,) = fl g2 -f2 g1 and is evaluated along 
(x , ( t ) ,  y,( t ) )  which represents the trajectory r ( t )  in the steady flow. Note that M ,  is 
different for each branch of the homoclinic loop. The variable to is to account for the 
phase difference between the unperturbed trajectory and the perturbation. It lies in 
the range [ O , T ] ,  T = 2 x 1 ~ .  A convenient scaling 

70 = wt, (4.4) 

then confines the phase 70 to the interval [0,2x]. From (4.2), the change in $(x, y) 
over successive crossings of the surface of section Z depends on the value of the phase 
70 at Z. We therefore construct a mapping for the phase 70. Since 7;+l is the phase 
difference at the (n+ 1)th circuit it is related to 70" by the circuit time of the (n+ 1)th 
circuit, 

(4.5) 

where P($) is the circuit time of a unperturbed trajectory with streamfunction $, in 
the outer neighbourhood of r. The separatrix map is then the two dimensional map 

7:+1 = 70" + wP( $n+l), 
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The map of (4.6) and (4.7) applies only in the neighbourhood of r exterior to the 
recirculation region 9, where r can be r+ or r- and each case will be considered 
separately but will be shown to be identical to leading order in E .  

It is easily shown that the Melnikov function, Mr(70), is a periodic function of the 
form, 

The Melnikov function corresponding to either branch of the double homoclinic loop 
must then cross zero for some 70 E [0,2x] and My(70) of (4.8) has at  least two zeros. 
From the Melnikov theory, this confirms the existence of chaotic particle paths in the 
time-periodic flow since a zero of the Melnikov function implies the intersection of 
stable and unstable manifolds (homoclinic tangles) associated with the hyperbolic 
saddle point of the time-T Poincark map and, thus, the existence of a Smale 
horseshoe with stretching and folding operations (theorems 4.5.3 and 5.3.5 of 
Guckenheimer & Holmes 1983). We shall use the flow field in local Cartesian 
coordinates, u and v of (2.10) and (2.11), to express the Melnikov function of (4.3) in 
the form of (4.8) and obtain an analytical expression for A ,  and #r to leading order 
in E .  For simplicity, we shall consider only r+. 

My(70) = A,-(€, 8, W )  sin ( 7 0  + 6, (4.8) 

Thus, from (4.3), 

(4.13) 

To obtainBi+ andBF+, we shall convert the time integrations of (4.10) and (4.11) into 
an integration over the azimuthal direction x. In the steady flow, dz/dt = ~ ( z , y ) ,  
where is obtained from (2.10). Since y = y+(x) on r+, with y+(x) given by (3.21), one 
obtains to leading order in E 

(4.14) 

t ( x )  = 1 ( '  + '1 In 1 tan (ix + in)[, (4.15) 

where t ( x )  gives time as a function of azimuthal position on r+ with initial time t = 0 
at x = 0. As expected, t ( x )  goes from + a to - a as 2 goes from - x  to + x .  Since 
E ,  V, 6, B in (4.10) and (4.11) are also evaluated along r+, we replace x+(t)  by x and 

d26 
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FIQURE 6. Leading-order estimate of the Melnikov function at the outer separatrix r+ EM a function 
of the T ~ .  Two zeros are clearly evident, indicating the existence of homoclinic tangle. Parameter 
values are E = 0.2 and 8 = 1.0. 

the velocity components are now evaluated a t  (x,y+(x)). Thus, inserting y+(z) of 
(3.21) in a, V, 8 and B and using (4.13) and (4.14), (4.10) and (4.11) are expanded to 
leading order in E to yield 

A,-+ and g5r are then evaluated using (4.12) and (4.13) respectively. The Melnikov 
function, d r + ( T o ) ,  is plotted against T~ in figure 6 for a pair of A,-+ and $r+ obtained 
from the leading-order analytical estimates outlined above. Two zeros are clearly 
evident confirming the existence of chaotic transport. For f-, we use y-(x) of (3.21), 
and following the same procedure as outlined for f+, it is easily shown that to leading 
order in E, 

Ar- = Ar+, (4.18) 

$r- = g5r+y (4.19) 

and we shall refer to them collectively as A ,  and g 5 p  It is found that A,  is non-zero 
and finite for all non-zeros values of E, 8 and w.  Thus for any finite amplitude of the 
periodic forcing, chaotic particle paths exist for the entire parametric range over 
which the analysis is valid. We emphasize that the theory is valid only for small a. 
While the existence of zeros of the Melnikov functions shown in figure 6, confirms the 
existence of chaotic motions, it does not indicate how widespread the chaotic particle 
motion is. We shall address this through the separatrix map of (4.6) and (4.7). 

The separatrix map is still too complicated to allow any analysis. Since a 4 1.0, 
variations in @ over successive iterations of the map are small provided A, is small, 
and we can linearize the map in @n+l about a trajectory in the outer neighbourhood 
o f f .  Defining the normalized deviation stream function 

(4.20) 
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where 3, is the value of 3 on r and is, hence, the value of 3 a t  (n, yA)  i.e. 
3, = $(n,yA). Since the validity of the separatrix map is restricted to the outer 
neighbourhood of r, < $, and w is a positive quantity. Then, linearizing (4.7) 
about a characteristic orbit, w*, 

7;+1 = 7; + wP(wn+l) 

1: 7;  +WIP(W*)+p(Wn+l-W*)] (4.21) 

in terms of the normalized deviation stream function w,  (4.6) becomes 

(4.22) 

Thus, the lineariza,tion is valid only if 

d, 4 1.  (4.23) 

Since $, - S2/2(1 +6) is of order unity. We shall choose w* to correspond to a 
resonant orbit with circuit time an integral multiple of the forcing period, T. 

2n 
P(w*)  = mT = m-, (4.24) 

w 

where m is an integer. Hence, (4.17) becomes 

7;+l = ~;+2mn+wP'(w*) (wn+l-w*). (4.25) 

Since T ;  - 2mx = T: by definition, the phase map is further simplified by eliminating 
2mn from (4.25). To convert to the conventional action-angle coordinates, we define 

p+l = wp'(w*) (Wn+l-W*), (4.26) 

(4.27) en = To" + $,, 
and the standard map (Chirikov 1979) results in 

In+l = In + Kr sin On, (4.28) 

(4.29) en.1 = p + p + 1 ,  

where the 'stochasticity parameter' K ,  corresponding to a given branch of the double 
homoclinic loop is 

awP(w*) A ,  

Ar 
K ,  = (4.30) 

We note that K r  is dependent on the normalized stream function w* for the resonant 
orbit. 

4.2. Estimates of the width and efeective diffusivity of the stochastic layers 
The standard map of (4.28) and (4.29) has been studied extensively in the literature 
(see Lichtenberg & Lieberman, 1983, and references therein) and it has been shown 
that for lK,-/ greater than a critical value, K,,  called the stability border of K,, 
variations in I become chaotic. Thus chaotic motions occur for the standard map 
when 

1KA > K ,  = 0.972. (4.31) 

Since the resonant orbits of the separatrix map, w*, are dense close to r, P' (w*) can 
be replaced by P'(w).  The quantity P(w) is singular at the separatrix and it decreases 
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FIGURE I. Computed rate of change of the circuit time away from the separatrix r+ aa a function 
of the steady stream function. The estimate of (4.39) lies on top of the computed value with 
gr = 0.2 and is not drawn. Parameter values are E = 0.2 and 6 = 1.0. 

* 

rapidly as one moves away from away from r. Thus, P'(w) also decreases 
monotonically with increasing w as one moves into SZ, and D2 (see figure 7). 
Consequently, one expects chaotic trajectories in the outer neighbourhood of T u p  to 
a distance determined by 

K,(w,) = K,.  (4.32) 

The stochastic layer is then confined within w < w,. In terms of the steady stream 
function, $, the stochastic layer outside r is confined within 

$, < 3 < $r (4.33) 

where $, is given by the relationship 

(4.34) 

where the dot now denotes derivative with respect to $ instead of w and the width 
L, of the stochastic layer, external to r, is given in terms of the steady stream function 

L, = $r- $c (4.35) 

and holds at every azimuthal position x. This can be converted into actual width L 
by using the local expansion on the surface C at x = 0, 

A$= ( g ) ( x = O .  y =  y*(O))Ay--Ay, 2es  
( 1 + 4  

(4.36) 

such that the width of the stochastic layer is estimated to be 

L - Lg(l+6)/(2€h). (4.37) 

Further simplification can be made if the circuit time P ( 3 )  can be estimated. This 
is achieved by using the leading-order estimate of the steady flow field in (2.13b). To 
zeroth order in the eccentricity E ,  the circuit time is obtained by integrating (2.15) 
around the gap to yield 

(4.38) 
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FIGURE 8. Comparison of predicted and computed values of d, at T+(s = 0.2 and 6 = 1.0). 
w 

and using (4.20) to link w and $, one obtains 

(4.39) 

This estimate is in excellent agreement with the computed values in figure 7 and is 
not drawn. Equations (4.29) and (4.34) then allow a simple explicit expression for 
both L, and L ,  

(4.40) 

and L is still given by (4.37). It is then evident that L varies as at and increasing the 
forcing amplitude should effect a monotonic increase in the enhancement. The 
variation with the forcing frequency w is more complex. We note that this w- 
dependence is contained in W A r ( E , & , W )  and large wA, would imply large L. The 
expressions (4.12), (4.16) and (4.17), are used to obtain the wA, values in figure 8 at 
different o and at E = 0.2 and 6 = 1.0. The exact values from (4.3) are also computed 
with the flow field of (2.10) and (2.11). Comparison to our estimate in figure 8 shows 
good agreement. Multiple but successively diminishing maxima are observed. The 
smaller maxima are not well resolved by our analysis and this is attributed to higher- 
order effects of 6, not incorporated in (4.16) and (4.17). There appears to be an 
optimum forcing frequency, w ,  N 0.4, where the stochastic layer is thickest with fast 
decay on either side. This prediction is verified numerically as shown in figure 9 where 
Poincare’ sections of a tracer particle initially located near the hyperbolic saddle 
point A are depicted. It is clearly evident that the stochastic layer is of largest width 
L a t  the optimum forcing frequency w ,  x 0.4. The estimate ofL at this frequency can 
be extracted from (4.37) and (4.40). From figure 8, wA, is predicted to be 
approximately 0.07 a t  w, which yields L,  =.0.21 and L = 0.47. This is of the same 
magnitude as the azimuthally averaged thickness in figure 9(b) even though our 
estimate should not be accurate for such a thick layer. 

For Kr % K ,  (i.e. close to the separatrix), the stochastic variations in the action I 
of the standard map of (4.28) and (4.29) can be approximated by a diffusion process 
in I (Chirikov 1979). It should be noted that Karney (1983) has shown that this 
diffusion is only valid at  extremely large Kj- when the ‘stochastic sea ’ engulfs the 
entire phase space. At  lower values of K,, surviving islands appear within the sea 
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FIGURE 9. Poincar6 section of the stochastic layer in the vicinity of r at (a) w = 0.01, ( b )  
w = 0.4 and (c) w = 0.7 showing a clear maximum at w, = 0.4 (6 = 0.2, 8 = 1.0 and a = 0.2). 

which destroy the stochastic nature of particle motion and give rise to anomalous 
diffusion. The high K ,  limit corresponds to the region next to the separatrix where 
K ,  approaches infinity from (4.30) and (4.39). In this limit, one can invoke the 
ergodic assumption and it can be easily shown from a phase-space average of (4.30) 
that the first moment of the variation in action 1 is zero while the second moment 
grows linearly with n, (0 = 0, (4.41) 

(fw = w r ,  (4.42) 

where the angle brackets denote expectation. Hence, from the definition of Markov 
diffusion processes, the variations in action 1 is a diffusion-like process in this limit 
with a zero drift coefficient and a diffusivity of $KF, 

DFP = iK;. (4.43) 
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The diffusivity of the flow field is then obtained using the following relation between 

, (4.44) 
maps and flows p a p  = PDflow 

where P is the mean time between successive iterations of the map. At the separatrix, 
P approaches infinity and it decays by I$ - $Ap1 away from the separatrix as indicated 
by (4.38). Hence, we aim to obtain an upper bound on the effective diffusivity and 
choose P to be the value P($,) where DPlow is largest. This quantity can be easily 
estimated from (4.38) and (4.40). An average P($) over the entire stochastic layer is 
not possible owing to the I$ - singularity a t  the separatrix. Thus, the effective 
diffusivity in I owing to the chaotic transport within the stochastic layer is bounded 

(4.45) 

where 7 is the mean time between successive intersections of a trajectory with the 
surface. 

While (4.45) is strictly valid only a t  K,  % K,, we shall assume that it holds over 
the entire width L,, in keeping with our estimate of an upper bound to time-averaged 
enhancement. Since stochastic variations in I imply stochastic variations in $, one 
obtains from (4.26) (AP) = [wP‘(w)12 (Aw2) 

= [wP($)I2 (A$’). (4.46) 
Hence, the diffusion in $ is simply 

D,, = KF/./(4n(@c) [ 4 $ ) 1 2 }  

(4.47) 

after substituting (4.30). This can be converted to diffusivity in the local radial 

(4.48) 

This estimate of the effective diffusivity due to stochastic transport can be further 
simplified by using the estimates for P($,) and L, in (4.38) and (4.40), 

(4.49) 

This represents the most convenient upper bound on the effective radial diffusivity 
of the stochastic transport across the separatrices r owing to homoclinic 
entanglement. Because of the symmetries of (4.18), the diffusivities a t  the two 
separatrices r, and r- are identical to leading order. Since A ,  is a complex function 
of w ,  e and S. The effects of these parameters on D, are not explicit and must be 
numerically derived from the Melnikov result of (4.12). In fact, the non-monotonic 
behaviour with respect to w is already apparent in figure 8. The maximum of L with 
respect to w coincides with the maximum of wA, a t  w, by virtue of (4.40). (The 
optimal frequency for maximum width occurs a t  w, - 0.4 for the conditions in figure 
8.) However, owing to an additional factor of w2 in (4.49), the maximum in the 
effective diffusivity is expected to shift slightly from w,. The shift is small, however, 
because of the small magnitude of wA, relative to w near w,. Hence, we expect a 
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maximum time-averaged enhancement to occur for a forcing frequency near w,. This 
will be verified in the subsequent analysis. The effect of a is more explicit. Since the 
width of the stochastic layer L increases as a4 and D, by a!, we hence expect a 
monotonic increase in time-averaged enhancement with respect to forcing amplitude. 
Finally, it should be noted that, owing to the constraint (4.23), our Melnikov analysis 
is strictly valid for thin layers with small diffusivities. This is not to say that thick 
layers with large diffusivities cannot be introduced with periodic perturbation. It 
simply needs to be studied numerically. 

4.3. Derivation of time-averaged enhancement 

We shall now utilize our estimated time-averaged diffusivity of stochastic transport 
in (4.49) to obtain an estimate of the time-averaged diffusivity. Since D,  is small, 
we assume that the ratio of stochastic to molecular diffusivities D, Pe is of order 
unity. Since the chaotic transport is statistically independent of molecular diffusion, 
the sum of two independent Markov diffusion processes, each with zero drift and 
finite diffusion coefficient, is also a Markov diffusion process with zero drift and the 
diffusion coefficient is equal to the sum of the two independent processes. Hence, the 
effective normalized time-averaged diffusivity within the stochastic layer is 1 + D,  Pe 
and a simple flux balance yields the time-averaged flux at the r+ boundary of the 
stochastic layer. 

(4.50) 
i3T 
- (Y+(Z)) = m y + )  - 11 
a Y  

If PeD, is negligible, this reduces to condition (3.343) of the unperturbed system, 
after transformation to the CT coordinate of the diffusive boundary as expected. If 
Pe D, approaches infinity, corresponding to a small stochastic diffusivity that is 
nevertheless much greater than molecular diffusivity Pe-l, (4.50) reduces to 

(4.51) 

This reflects the physical picture that, since stochastic diffusivity is much in excess 
of its molecular counterpart, the time-averaged temperature field within the 
stochastic layer is also uniform as in the recirculation region. This essentially 
enlarges the recirculation by a width of L on both sides. Hence, the width of the 
diffusive region SZ, is reduced from y+ to y+-L. This accounts for the difference 
between (4.51) and (3.343). 

Using (4.50) in place of (3.343)) our estimate of the time-averaged enhancement 
then proceeds as the steady enhancement of $3.  We use the expansion 

--L(l+--) 1 dyr+ L 

Y+-L Ys 
(4.52) 

as before but now stipulating that L, which must be small for our Melnikov analysis 
to be valid, is of O(d). It can then be readily shown that the time-averaged 
enhancement is related to the steady enhancement by 

<D ) D,,, L PeD, eff - --+-( ) 
D D y, l+PeD,  

(4.53) 

(4.54) 
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FIGURE 10. Predicted time-averaged enhancement as a function of forcing frequency compared 
to computed values a t  large time. (Pe = 5000, u = 0.2, E = 0.2 and 8 = 1.0). 

where the steady enhancement Dell can be obtained from (3.23), (3.25), (3.42) or 
(3.49) and L and D,, which result from the perturbation, are estimated from (4.37), 
(4.40) and (4.49). The bracket ( ) denotes time averaging here as in (3.1) instead of 
expectation in (4.41) and (4.42). In  the limit of negligible stochastic diffusivity 
(Pe D, + 0) or negligible width (L + 0) ,  (Deff) reduces to the steady value Dell. In  the 
limit of dominant stochastic diffusivity (PeD, +m), (4.54) reduces to an equation 
that can be derived from (4.51), 

(4.55) 

Again, this corresponds to a simple extension of the uniform temperature region of 
figure 3 by a width of L on both ends of the recirculation region. It is clear that 

De,, < (D)eff) < (Den)(PeDs = 00) (4.56) 

and (4.55) represent an even higher upper bound of the time-averaged enhancement. 
I n  figure 10, we compare the prediction of (4.54) to computed time-averaged 

enhancement from a finite-difference integration of the complete time-dependent 
energy equation using the bipolar flow field. As is evident, the estimate is reasonably 
tight considering the various leading-order expansion of both the flow field and the 
energy equation. As expected, the estimate is good when chaotic enhancement is 
small and both L and D, are accurately estimated from our local Melnikov analysis. 
The estimate deteriorates near we - 0.4 because of the large enhancement although 
we is accurately predicted. 

This optimum in the forcing frequency is independent of the amplitude of forcing 
a since A ,  is independent of a. Thus, it is reasonable to expect the enhancement will 
display a maximum with respect to w a t  the same w value when the amplitude a is 
increased. I n  figure 11, numerical values of D e f f / D  at a = 0.4 and the same E and Q 
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FIQURE 11 .  Computed and predicted time-averaged enhancement w a function of forcing 
frequency for a = 0.4 and the same conditions as figure 10. 
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FIQURE 12. Computed and predicted time-averaged enhancement as a function of forcing 
amplitude at w = 0.4 and the same conditions aa figure 10. 

values as in figure 10 are depicted. The maximum remains even though our analysis 
is not expected to hold at  this relatively large value of a as shown. From our analysis, 
it is also evident that the width L increases with increasing a. Thus, enhancement is 
expected to increase rapidly with increasing amplitude a and this is verified in the 
numerically computed values of time-averaged enhancement at  several a for o at the 
optimal value w, in figure 12. Significant enhancement as much as 50% over the 
steady enhancement recirculation and 100% over pure diffusion can be achieved 
with chaotic enhancement at large-amplitude forcing by selecting the optimum 
forcing frequency. 
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5. Summary 
We have demonstrated with the eccentric cylinders as a prototype that cross- 

stream heat or mass transfer across a bounded nearly parallel flow can be enhanced 
by a slender closed recirculation region. The leading-order enhancement is 
independent of Pe and is of the order of the width of the recirculation region scaled 
by the cross-stream dimension. We have also examined the effect of perturbing the 
nearly parallel flow with a time-periodic forcing function such that a homoclinic 
entanglement of the bounding separatrices occurs which allows chaotic advection 
transport across the separatrices. Our Melnikov analysis shows that the enetration 
depth varies as ui whereas the effective stochastic diffusivity varies as ur where u is 
the forcing amplitude. An optimum forcing frequency is found which yields the 
largest time-averaged enhancement. Although our analysis is only valid for weak 
forcing and is hence only accurate for small chaotic enhancement, numerical results 
indicate that large enhancement over the unperturbed case can be achieved with 
strong forcing at  the optimum frequency, which is accurately predicted by the local 
analysis. It should be noted that this forcing does not need to be introduced 
artificially. Intrinsic hydrodynamic instability can also provide the requisite 
perturbation. This suggests that enhancement by both the recirculation region and 
chaotic transport can be optimized with careful selection of system geometry and the 
perturbation or instability frequency. The existence of an optimum forcing frequency 
is most interesting. Although it is not pronounced for the present creeping flow field, 
one expects the power requirement to increase monotonically and rapidly with 
forcing frequency when hydrodynamic inertia is important. This suggests that a 
careful optimization can achieve maximum enhancement with minimum power 
input. Our analysis also explains why large heat-transfer enhancement is observed 
when recirculation is introduced to a nearly parallel flow. It is probable that a 
significant portion of the enhancement is due to chaotic transport introduced by 
intrinsic or external forcing. We note that this forcing does not need to be time- 
periodic - it can be random forcing. Nor does it need to be time-varying. A spatially- 
varying forcing also allows the fluid element to sample a larger portion of the cross- 
section surface normal to the direction in which the forcing is introduced. This is 
essentially the basis of a heat-exchanger tube we have designed recently to exploit 
heat-transfer enhancement due to chaotic mixing (Acharya et al. 1992). Nevertheless, 
it is clear from our analysis that chaotic transport can only occur if a recirculation 
region bounded by separatrices corresponding to homoclinic or heteroclinic loops 
exists. Its contribution to heat/mass transfer is only significant at  high PBclet 
numbers and the key physical mechanism is the crossing of the bounding separatrices 
due to homoclinic or heteroclinic entanglement. It is fortunate that most mass 
transfer devices operate a t  high Pe and this suggests that chaotic enhancement can 
indeed significantly improve the performance of practical mass transfer equipment. 
In this respect, we observe that, although our estimates are for the prototype of 
eccentric cylinders, the analysis and the results can be extended in principle to other 
nearly parallel flows with slender recirculation. For example, in the steady estimates 
of (3.23), (3.25) and (3.42), the geometric parameters 3 and S simply correspond to 
the characteristic width of the slender recirculation region and the characteristic 
velocity jump across it. The L and D, of the time-averaged enhancement in (4.54) can 
also be obtained from an appropriate Melnikov analysis of the specific stochastic 
layers. If the steady and perturbation flow fields are known, the analysis in the first 
part of 54 can be easily duplicated. Hence, analysis of other devices can easily follow 

P 
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the present approach. The largest limitation of our analysis is that the Melnikov 
theory is only valid for small a even though figures 11 and 12 show surprising 
accuracy even a t  moderately large a. Escande & Elskens (1991) have carried out a 
study of the local map at large a (and small w )  which should be extendable by our 
formulation to analyse effective transport enhancement. 

This work is supported by the Gas Research Institute under Contract no. 5090- 
260-1971. We thank Mr N. Acharya for help with the numerical computations. 
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